In host-guest chemistry, cucurbiturils are macrocyclic molecules made of glycoluril (=C4H2N4O2=) monomers linked by methylene bridges (−CH2−). The oxygen atoms are located along the edges of the band and are tilted inwards, forming a partly enclosed cavity (cavitand). The name is derived from the resemblance of this molecule with a pumpkin of the family of Cucurbitaceae.
Cucurbiturils are commonly written as cucurbit[n]uril, where n is the number of glycoluril units. Two common abbreviations are CB[n], or simply CBn.
These compounds are particularly interesting to chemists because they are suitable hosts for an array of neutral and cationic species. The binding mode is thought to occur through hydrophobic interactions, and, in the case of cationic guests, through cation-dipole interactions as well. The dimensions of cucurbiturils are generally on the ~10 Å size scale. For instance, the cavity of cucurbit[6]uril has a height ~9.1 Å, an outer diameter ~5.8 Å, and an inner diameter ~3.9 Å.[1]
Cucurbiturils were first synthesized in 1905 by Robert Behrend, by condensing glycoluril with formaldehyde,[2] but their structure was not elucidated until 1981.[3] The field expanded as CB5, CB7, and CB8 were discovered and isolated by Kim Kimoon in the year 2000.[4] To date cucurbiturils composed of 5, 6, 7, 8, 10, and 14 repeat units have all been isolated,[5][6] which have internal cavity volumes of 82, 164, 279, 479, and 870 Å3 respectively. A cucurbituril composed of 9 repeat units has yet to be isolated (as of 2009). Other common molecular capsules that share a similar molecular shape with cucurbiturils include cyclodextrins, calixarenes, and pillararenes.