Curvature invariant (general relativity)

In general relativity, curvature invariants are a set of scalars formed from the Riemann, Weyl and Ricci tensors — which represent curvature, hence the name — and possibly operations on them such as contraction, covariant differentiation and dualisation.

Certain invariants formed from these curvature tensors play an important role in classifying spacetimes. Invariants are actually less powerful for distinguishing locally non-isometric Lorentzian manifolds than they are for distinguishing Riemannian manifolds. This means that they are more limited in their applications than for manifolds endowed with a positive definite metric tensor.