Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases involved in the regulation of the cell cycle and its progression, ensuring the integrity and functionality of cellular machinery. These regulatory enzymes play a crucial role in the regulation of eukaryotic cell cycle and transcription, as well as DNA repair, metabolism, and epigenetic regulation, in response to several extracellular and intracellular signals.[1][2] They are present in all known eukaryotes, and their regulatory function in the cell cycle has been evolutionarily conserved.[3][4] The catalytic activities of CDKs are regulated by interactions with CDK inhibitors (CKIs) and regulatory subunits known as cyclins. Cyclins have no enzymatic activity themselves, but they become active once they bind to CDKs. Without cyclin, CDK is less active than in the cyclin-CDK heterodimer complex.[5][6] CDKs phosphorylate proteins on serine (S) or threonine (T) residues. The specificity of CDKs for their substrates is defined by the S/T-P-X-K/R sequence, where S/T is the phosphorylation site, P is proline, X is any amino acid, and the sequence ends with lysine (K) or arginine (R). This motif ensures CDKs accurately target and modify proteins, crucial for regulating cell cycle and other functions.[7] Deregulation of the CDK activity is linked to various pathologies, including cancer, neurodegenerative diseases, and stroke.[6]
^Morgan D (2007). The Cell Cycle: Principles of Control. London: New Science Press Ltd. pp. 2–54, 196–266. ISBN978-0-9539181-2-6.
^Alberts B, Hopkin K, Johnson A, Morgan D, Raff M, Roberts K, Walter P (2019). Essential Cell Biology (5th ed.). W. W. Norton & Company. pp. 613–627. ISBN9780393679533.