D37D

Minuteman III guidance ring containing the D37D computer.
Minuteman III guidance ring on display at the National Air and Space Museum.

The D37D Minuteman III flight computer was initially supplied with the LGM-30G missile, as part of the NS-20 navigation system. The NS-20 D37D flight computer is a miniaturized general purpose (serial transmission) digital computer. The new NS-50 missile guidance computer (MGC) is built around a 16-bit high-speed microprocessor chip set. They are both designed to solve real-time positional error problems under the adverse conditions encountered in airborne weapon systems. They accept and process data and generate steering signals with sufficient accuracy and speed to meet the requirements of the inertial guidance and flight control systems of the Minuteman ICBMs.

Computer operation is controlled by an internally stored program which is loaded from a magnetic tape cartridge at the launch facility (LF). Both the D37D computer and the MGC are designed and programmed to control the Minuteman III missile throughout the powered portion of flight. After thrust termination they also control the PBV for the reentry vehicle (RV) deployment phase. In addition, they control the alignment of the inertial platform and test/monitor the guidance & control (G&C) system and other components to determine continued readiness while missiles are in alert status. The D37D computer began to be replaced by the MGC in 2000 as part of the Guidance Replacement Program (GRP), with fielding planned through 2008. The MGC incorporates the amplifier assembly functions.

When a launch is commanded, a complete retesting of the G&C system is made prior to entering the flight program. During flight, the computer uses missile attitude, change of attitude rate, and velocity signal inputs to solve a series of guidance, steering, and control equations. It also generates missile steering commands and controls staging and thrust termination. Finally, the computer determines whether or not to provide pre-arm signals to the warhead. The pre-arm decision is based on flight safety checks made during powered flight.