Special dagger category that is compact
In category theory , a branch of mathematics , dagger compact categories (or dagger compact closed categories ) first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations (that is, Tannakian categories ).[ 1] They also appeared in the work of John Baez and James Dolan as an instance of semistrict k -tuply monoidal n -categories , which describe general topological quantum field theories ,[ 2] for n = 1 and k = 3. They are a fundamental structure in Samson Abramsky and Bob Coecke 's categorical quantum mechanics .[ 3] [ 4] [ 5]
^ Doplicher, S.; Roberts, J. (1989). "A new duality theory for compact groups". Invent. Math . 98 : 157–218. Bibcode :1989InMat..98..157D . doi :10.1007/BF01388849 . S2CID 120280418 .
^ Baez, J.C.; Dolan, J. (1995). "Higher-dimensional Algebra and Topological Quantum Field Theory". J. Math. Phys . 36 (11): 6073–6105. arXiv :q-alg/9503002 . Bibcode :1995JMP....36.6073B . CiteSeerX 10.1.1.269.4681 . doi :10.1063/1.531236 . S2CID 14908618 .
^ Abramsky, S. ; Coecke, B. (2004). "A categorical semantics of quantum protocols". Proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS'04) . IEEE. pp. 415–425. arXiv :quant-ph/0402130 . CiteSeerX 10.1.1.330.7289 . doi :10.1109/LICS.2004.1319636 . ISBN 0-7695-2192-4 . S2CID 1980118 .
^ Abramsky, S.; Coecke, B. (2009). "Categorical quantum mechanics" . In Engesser, K.; Gabbay, D.M.; Lehmann, D. (eds.). Handbook of Quantum Logic and Quantum Structures . Elsevier. pp. 261–323. arXiv :0808.1023 . ISBN 978-0-08-093166-1 .
^ Abramsky and Coecke used the term strongly compact closed categories, since a dagger compact category is a compact closed category augmented with a covariant involutive monoidal endofunctor.