Deadstick landing

A deadstick landing, also called a dead-stick landing or volplaning, is a type of forced landing when an aircraft loses all of its propulsive power and is forced to land. The "stick" does not refer to the flight controls, which in most aircraft are either fully or partially functional without engine power, but to the traditional wooden propeller, which without power would just be a "dead stick".[1] When a pilot makes an emergency landing of an aircraft that has some or all of its propulsive power still available, the procedure is known as a precautionary landing.

All fixed-wing aircraft have some capability to glide with no engine power; that is, they do not fall straight down like a stone, but rather continue to move horizontally while descending. For example, with a glide ratio of 15:1, a Boeing 747-200 can glide for 150 kilometres (93 mi; 81 nmi) from a cruising altitude of 10,000 metres (33,000 ft). After a loss of power, the pilot’s goal is to maintain a safe airspeed and fly the descending aircraft to the most suitable landing spot within gliding distance, then land with the least amount of damage possible. The area open for potential landing sites depends on the original altitude, local terrain, the engine-out gliding capabilities of the aircraft, original airspeed and winds at various altitudes. Part of learning to fly a fixed-wing aircraft is demonstrating the ability to fly safely without an engine until prepared to make (or actually making) a landing. Gliders, unless they have an auxiliary motor, do all their flying without power, and trained pilots can touch down on virtually any spot they pick from the air.

The success of the deadstick landing largely depends on the availability of suitable landing areas. A competent pilot gliding a relatively light, slow plane to a flat field or runway should result in an otherwise normal landing, since the maneuver is not especially difficult, requiring only strict attention and good judgement concerning speed and height. A heavier, faster aircraft or a plane gliding into mountains or trees could result in substantial damage.

With helicopters, a forced landing involves autorotation, since the helicopter glides by allowing its rotor to spin freely during the descent thus generating lift.

  1. ^ LeCompte, Tom (January 1, 2010). "Deadstick Landings". Smithsonian Magazine. Archived from the original on March 28, 2023. Retrieved July 30, 2023.