The Deccan Traps are a large igneous province of west-central India (17–24°N, 73–74°E). They are one of the largest volcanic features on Earth, taking the form of a large shield volcano.[2] They consist of many layers of solidified flood basalt that together are more than about 2,000 metres (6,600 ft) thick, cover an area of about 500,000 square kilometres (200,000 sq mi),[3] and have a volume of about 1,000,000 cubic kilometres (200,000 cu mi).[4] Originally, the Deccan Traps may have covered about 1,500,000 square kilometres (600,000 sq mi),[5] with a correspondingly larger original volume. This volume overlies the Archean age Indian Shield, which is likely the lithology the province passed through during eruption. The province is commonly divided into four subprovinces: the main Deccan, the Malwa Plateau, the Mandla Lobe, and the Saurashtran Plateau.[6]
The eruptions occurred over a 600–800,000 year time period between around 66.3 to 65.6 million years ago, spanning the Cretaceous–Paleogene boundary. While some authors have suggested that the eruptions were the primary cause of the Cretaceous–Paleogene mass extinction event, which dates to around 66.05 million years ago,[7] this has been strongly disputed, with many authors suggesting that the Chicxulub impact was the primary cause of the extinction.[8][9][10] While some scholars suggest that the eruptions may have been a contributing factor in the extinctions, others suggest that the role of the Deccan Traps in the extinction may have been negligible or even partially negated the effects of the impact.[10][9]
The Deccan Traps are thought to have been produced in major part by the still active Réunion hotspot, responsible for the creation of the modern Mascarene Islands in the Indian Ocean.[11]
^Dessert, Céline; Dupréa, Bernard; Françoisa, Louis M.; Schotta, Jacques; Gaillardet, Jérôme; Chakrapani, Govind; Bajpai, Sujit (2001). "Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater". Earth and Planetary Science Letters. 188 (3–4): 459–474. Bibcode:2001E&PSL.188..459D. doi:10.1016/S0012-821X(01)00317-X.