Decomposition of spectrum (functional analysis)

The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:

  • a point spectrum, consisting of the eigenvalues of ;
  • a continuous spectrum, consisting of the scalars that are not eigenvalues but make the range of a proper dense subset of the space;
  • a residual spectrum, consisting of all other scalars in the spectrum.

This decomposition is relevant to the study of differential equations, and has applications to many branches of science and engineering. A well-known example from quantum mechanics is the explanation for the discrete spectral lines and the continuous band in the light emitted by excited atoms of hydrogen.