In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that certain polyhedra with equal volume cannot be dissected into each other.
Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal. Having Dehn invariant zero is a necessary (but not sufficient) condition for being a space-filling polyhedron, and a polyhedron can be cut up and reassembled into a space-filling polyhedron if and only if its Dehn invariant is zero. The Dehn invariant of a self-intersection-free flexible polyhedron is invariant as it flexes. Dehn invariants are also an invariant for dissection in higher dimensions, and (with volume) a complete invariant in four dimensions.
The Dehn invariant is zero for the cube but nonzero for the other Platonic solids, implying that the other solids cannot tile space and that they cannot be dissected into a cube. All of the Archimedean solids have Dehn invariants that are rational combinations of the invariants for the Platonic solids. In particular, the truncated octahedron also tiles space and has Dehn invariant zero like the cube.
The Dehn invariants of polyhedra are not numbers. Instead, they are elements of an infinite-dimensional tensor space. This space, viewed as an abelian group, is part of an exact sequence involving group homology. Similar invariants can also be defined for some other dissection puzzles, including the problem of dissecting rectilinear polygons into each other by axis-parallel cuts and translations.