Deltoidal hexecontahedron | |
---|---|
(Click here for rotating model) | |
Type | Catalan |
Conway notation | oD or deD |
Coxeter diagram | |
Face polygon | kite |
Faces | 60 |
Edges | 120 |
Vertices | 62 = 12 + 20 + 30 |
Face configuration | V3.4.5.4 |
Symmetry group | Ih, H3, [5,3], (*532) |
Rotation group | I, [5,3]+, (532) |
Dihedral angle | 154.1214° arccos(-19-8√5/41) |
Properties | convex, face-transitive |
rhombicosidodecahedron (dual polyhedron) |
Net |
In geometry, a deltoidal hexecontahedron (also sometimes called a trapezoidal hexecontahedron, a strombic hexecontahedron, or a tetragonal hexacontahedron[1]) is a Catalan solid which is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. It is one of six Catalan solids to not have a Hamiltonian path among its vertices.[2]
It is topologically identical to the nonconvex rhombic hexecontahedron.