Derjaguin approximation

Derjaguin approximation related the force between two spheres (top) and the interaction energy between two plates (bottom).

The Derjaguin approximation (or sometimes also referred to as the proximity approximation), named after the Russian scientist Boris Derjaguin, expresses the force profile acting between finite size bodies in terms of the force profile between two planar semi-infinite walls.[1] This approximation is widely used to estimate forces between colloidal particles, as forces between two planar bodies are often much easier to calculate. The Derjaguin approximation expresses the force F(h) between two bodies as a function of the surface separation as[2]

where W(h) is the interaction energy per unit area between the two planar walls and Reff the effective radius. When the two bodies are two spheres of radii R1 and R2, respectively, the effective radius is given by

Experimental force profiles between macroscopic bodies as measured with the surface forces apparatus (SFA)[3] or colloidal probe technique[4] are often reported as the ratio F(h)/Reff.

  1. ^ Derjaguin, B.V. (1934). "Untersuchungen über die Reibung und Adhäsion, IV. Theorie des Anhaftens kleiner Teilchen" [Analysis of friction and adhesion, IV. The theory of the adhesion of small particles]. Kolloid Z. (in German). 69 (2): 155–164. doi:10.1007/BF01433225. S2CID 101526931.
  2. ^ Russel, W.B.; Saville, D.A.; Schowalter, W.R. (1989). Colloidal Dispersions. Cambridge University Press. ISBN 978-0521426008.
  3. ^ J. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 1992.
  4. ^ Ducker, W. A.; Senden, T. J.; Pashley, R. M. (1991). "Direct measurement of colloidal forces using an atomic force microscope". Nature. 353 (6341): 239. Bibcode:1991Natur.353..239D. doi:10.1038/353239a0. S2CID 4311419.
    Butt, H. J. R. (1991). "Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope". Biophysical Journal. 60 (6): 1438–1444. Bibcode:1991BpJ....60.1438B. doi:10.1016/S0006-3495(91)82180-4. PMC 1260203. PMID 19431815.