Algebraic structure in homological algebra
This article is about homological algebra. For the algebraic study of differential equations, see
Differential algebra.
In mathematics, in particular in homological algebra, algebraic topology, and algebraic geometry, a differential graded algebra (or DG algebra, or DGA) is an algebraic structure often used to model topological spaces. In particular, it is a graded associative algebra with a chain complex structure that is compatible with the algebra structure. A noteworthy example is the de Rham alegbra of differential forms on a manifold. DGAs have also been used extensively in the development of rational homotopy theory.