Direct method in the calculus of variations

In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional,[1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of a solution, direct methods may be used to compute the solution to desired accuracy.[2]

  1. ^ Dacorogna, pp. 1–43.
  2. ^ I. M. Gelfand; S. V. Fomin (1991). Calculus of Variations. Dover Publications. ISBN 978-0-486-41448-5.