Directed differentiation

Directed differentiation is a bioengineering methodology at the interface of stem cell biology, developmental biology and tissue engineering.[1] It is essentially harnessing the potential of stem cells by constraining their differentiation in vitro toward a specific cell type or tissue of interest.[2] Stem cells are by definition pluripotent, able to differentiate into several cell types such as neurons,[3] cardiomyocytes, hepatocytes, etc. Efficient directed differentiation requires a detailed understanding of the lineage and cell fate decision, often provided by developmental biology.[2][4]

  1. ^ Cohen DE, Melton D (2011). "Turning straw into gold: directing cell fate for regenerative medicine". Nature Reviews Genetics. 12 (4): 243–252. doi:10.1038/nrg2938. PMID 21386864. S2CID 26358726.
  2. ^ a b Murry CE, Keller G (2008). "Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development". Cell. 132 (4): 661–680. doi:10.1016/j.cell.2008.02.008. PMID 18295582.
  3. ^ Wichterle H, Lieberam I, Porter JA, Jessell TM (2002). "Directed differentiation of embryonic stem cells into motor neurons". Cell. 110 (3): 385–397. doi:10.1016/S0092-8674(02)00835-8. PMID 12176325.
  4. ^ Spagnoli FM, Hemmati-Brivanlou A (2006). "Guiding embryonic stem cells towards differentiation: lessons from molecular embryology". Current Opinion in Genetics & Development. 16 (5): 469–475. doi:10.1016/j.gde.2006.08.004. PMID 16919445.