Disclination

In crystallography, a disclination is a line defect in which there is compensation of an angular gap. They were first discussed by Vito Volterra in 1907,[1] who provided an analysis of the elastic strains of a wedge disclination. By analogy to dislocations in crystals, the term, disinclination, was first used by Frederick Charles Frank and since then has been modified to its current usage, disclination.[2] They have since been analyzed in some detail particularly by Roland deWit.[3][4]

Disclinations are characterized by an angular vector (called a Frank vector), and the line of the disclination. When the vector and the line are the same they are sometimes called wedge disclinations which are common in fiveling nanoparticles.[5][6] When the Frank vector and the line of the disclination are at right angles they are called twist disclinations. As pointed out by John D. Eshelby there is an intricate connection between disclinations and dislocations,[3][4] with dislocation motion moving the position of a disclination.[7]

Disclinations occur in many different material, ranging from liquid crystals[8] to nanoparticles[9][10] and in elastically distorted materials.[11]

  1. ^ Volterra, Vito (1907). "Sur l'équilibre des corps élastiques multiplement connexes". Annales scientifiques de l'École normale supérieure. 24: 401–517. doi:10.24033/asens.583. ISSN 0012-9593.
  2. ^ Chandrasekhar, S. (1977) Liquid Crystals, Cambridge University Press, p. 123, ISBN 0-521-21149-2
  3. ^ a b deWit, Roland (1973). "Theory of disclinations: II. Continuous and discrete disclinations in anisotropic elasticity" (PDF). Journal of Research of the National Bureau of Standards, Section A. 77A (1): 49–100. doi:10.6028/jres.077A.003. ISSN 0022-4332. PMC 6742835. PMID 32189727.
  4. ^ a b deWit, Roland (1973). "Theory of disclinations: IV. Straight disclinations". Journal of Research of the National Bureau of Standards, Section A. 77A (5): 607–658. doi:10.6028/jres.077a.036. ISSN 0022-4332. PMC 6728463. PMID 32189758.
  5. ^ deWit, Roland (1972). "Partial disclinations". Journal of Physics C: Solid State Physics. 5 (5): 529–534. Bibcode:1972JPhC....5..529D. doi:10.1088/0022-3719/5/5/004. ISSN 0022-3719.
  6. ^ Howie, A.; Marks, L. D. (1984). "Elastic strains and the energy balance for multiply twinned particles". Philosophical Magazine A. 49 (1): 95–109. Bibcode:1984PMagA..49...95H. doi:10.1080/01418618408233432. ISSN 0141-8610.
  7. ^ deWit, Roland (1971). "Relation between Dislocations and Disclinations". Journal of Applied Physics. 42 (9): 3304–3308. Bibcode:1971JAP....42.3304D. doi:10.1063/1.1660730. ISSN 0021-8979.
  8. ^ Chandrasekhar, S. (1977). Liquid crystals. Cambridge monographs on physics. Cambridge ; New York: Cambridge University Press. ISBN 978-0-521-21149-9.
  9. ^ Gryaznov, V. G.; Heydenreich, J.; Kaprelov, A. M.; Nepijko, S. A.; Romanov, A. E.; Urban, J. (1999). "Pentagonal Symmetry and Disclinations in Small Particles". Crystal Research and Technology. 34 (9): 1091–1119. Bibcode:1999CryRT..34.1091G. doi:10.1002/(SICI)1521-4079(199911)34:9<1091::AID-CRAT1091>3.0.CO;2-S.
  10. ^ Ji, Wenhai; Qi, Weihong; Li, Xu; Zhao, Shilei; Tang, Shasha; Peng, Hongcheng; Li, Siqi (2015). "Investigation of disclinations in Marks decahedral Pd nanoparticles by aberration-corrected HRTEM". Materials Letters. 152: 283–286. Bibcode:2015MatL..152..283J. doi:10.1016/j.matlet.2015.03.137.
  11. ^ Murayama, M.; Howe, J. M.; Hidaka, H.; Takaki, S. (2002). "Atomic-Level Observation of Disclination Dipoles in Mechanically Milled, Nanocrystalline Fe". Science. 295 (5564): 2433–2435. Bibcode:2002Sci...295.2433M. doi:10.1126/science.1067430. ISSN 0036-8075. PMID 11923534.