Algebraic structure → Group theory Group theory |
---|
In mathematics, a topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood which only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated.[1]
A subgroup H of a topological group G is a discrete subgroup if H is discrete when endowed with the subspace topology from G. In other words there is a neighbourhood of the identity in G containing no other element of H. For example, the integers, Z, form a discrete subgroup of the reals, R (with the standard metric topology), but the rational numbers, Q, do not.
Any group can be endowed with the discrete topology, making it a discrete topological group. Since every map from a discrete space is continuous, the topological homomorphisms between discrete groups are exactly the group homomorphisms between the underlying groups. Hence, there is an isomorphism between the category of groups and the category of discrete groups. Discrete groups can therefore be identified with their underlying (non-topological) groups.
There are some occasions when a topological group or Lie group is usefully endowed with the discrete topology, 'against nature'. This happens for example in the theory of the Bohr compactification, and in group cohomology theory of Lie groups.
A discrete isometry group is an isometry group such that for every point of the metric space the set of images of the point under the isometries is a discrete set. A discrete symmetry group is a symmetry group that is a discrete isometry group.