Discrete spline interpolation

In the mathematical field of numerical analysis, discrete spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a discrete spline. A discrete spline is a piecewise polynomial such that its central differences are continuous at the knots whereas a spline is a piecewise polynomial such that its derivatives are continuous at the knots. Discrete cubic splines are discrete splines where the central differences of orders 0, 1, and 2 are required to be continuous.[1]

Discrete splines were introduced by Mangasarin and Schumaker in 1971 as solutions of certain minimization problems involving differences.[2]

  1. ^ Tom Lyche (1979). "Discrete Cubic Spline Interpolation". BIT. 16 (3): 281–290. doi:10.1007/bf01932270. S2CID 122300608.
  2. ^ Mangasarian, O. L.; Schumaker, L. L. (1971). "Discrete splines via mathematical programming". SIAM J. Control. 9 (2): 174–183. doi:10.1137/0309015.