Disjoint-set/Union-find Forest | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | multiway tree | ||||||||||||||||||||
Invented | 1964 | ||||||||||||||||||||
Invented by | Bernard A. Galler and Michael J. Fischer | ||||||||||||||||||||
|
In computer science, a disjoint-set data structure, also called a union–find data structure or merge–find set, is a data structure that stores a collection of disjoint (non-overlapping) sets. Equivalently, it stores a partition of a set into disjoint subsets. It provides operations for adding new sets, merging sets (replacing them by their union), and finding a representative member of a set. The last operation makes it possible to find out efficiently if any two elements are in the same or different sets.
While there are several ways of implementing disjoint-set data structures, in practice they are often identified with a particular implementation called a disjoint-set forest. This is a specialized type of forest which performs unions and finds in near-constant amortized time. To perform a sequence of m addition, union, or find operations on a disjoint-set forest with n nodes requires total time O(mα(n)), where α(n) is the extremely slow-growing inverse Ackermann function. Disjoint-set forests do not guarantee this performance on a per-operation basis. Individual union and find operations can take longer than a constant times α(n) time, but each operation causes the disjoint-set forest to adjust itself so that successive operations are faster. Disjoint-set forests are both asymptotically optimal and practically efficient.
Disjoint-set data structures play a key role in Kruskal's algorithm for finding the minimum spanning tree of a graph. The importance of minimum spanning trees means that disjoint-set data structures underlie a wide variety of algorithms. In addition, disjoint-set data structures also have applications to symbolic computation, as well as in compilers, especially for register allocation problems.