Transfer of the sulfur atom of sulfite to the DsrC protein creating a trisulfide intermediate catalyzed by DsrAB
Reduction of the trisulfide to sulfide and reduced DsrC via a membrane bound enzyme, DsrMKJOP
Which requires the consumption of a single ATP molecule and the input of 8 electrons (e−).[2][3]
The protein complexes responsible for these chemical conversions — Sat, Apr and Dsr — are found in all currently known organisms that perform dissimilatory sulfate reduction.[4] Energetically, sulfate is a poor electron acceptor for microorganisms as the sulfate-sulfite redox couple has a standardformalreduction potential (E0') of -516 mV, which is too negative to allow reduction by NADH or ferrodoxin that are the primary intracellular electron mediators.[5] To overcome this issue, sulfate is first converted into APS by the enzyme ATP sulfurylase (Sat), at the cost of a single ATP molecule. The APS-sulfite redox couple has an E0' of -60 mV, which allows APS to be reduced by either NADH or reduced ferrodoxin using the enzyme adenylyl-sulfate reductase (Apr), which requires the input of 2 electrons.[5] In the final step, sulfite is reduced by the dissimilatory sulfite reductase (Dsr) to form sulfide, requiring the input of 6 electrons.[3]
^Barton, Larry L.; Fardeau, Marie-Laure; Fauque, Guy D. (2014). "Chapter 10. Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation". In Peter M.H. Kroneck and Martha E. Sosa Torres (ed.). The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. Vol. 14. Springer. pp. 237–277. doi:10.1007/978-94-017-9269-1_10. PMID25416397.