Dissipative operator

In mathematics, a dissipative operator is a linear operator A defined on a linear subspace D(A) of Banach space X, taking values in X such that for all λ > 0 and all xD(A)

A couple of equivalent definitions are given below. A dissipative operator is called maximally dissipative if it is dissipative and for all λ > 0 the operator λIA is surjective, meaning that the range when applied to the domain D is the whole of the space X.

An operator that obeys a similar condition but with a plus sign instead of a minus sign (that is, the negation of a dissipative operator) is called an accretive operator.[1]

The main importance of dissipative operators is their appearance in the Lumer–Phillips theorem which characterizes maximally dissipative operators as the generators of contraction semigroups.

  1. ^ "Dissipative operator". Encyclopedia of Mathematics.