Double factorial

The fifteen different chord diagrams on six points, or equivalently the fifteen different perfect matchings on a six-vertex complete graph. These are counted by the double factorial 15 = (6 − 1)‼.

In mathematics, the double factorial of a number n, denoted by n, is the product of all the positive integers up to n that have the same parity (odd or even) as n.[1] That is,

Restated, this says that for even n, the double factorial[2] is while for odd n it is For example, 9‼ = 9 × 7 × 5 × 3 × 1 = 945. The zero double factorial 0‼ = 1 as an empty product.[3][4]

The sequence of double factorials for even n = 0, 2, 4, 6, 8,... starts as

1, 2, 8, 48, 384, 3840, 46080, 645120, ... (sequence A000165 in the OEIS)

The sequence of double factorials for odd n = 1, 3, 5, 7, 9,... starts as

1, 3, 15, 105, 945, 10395, 135135, ... (sequence A001147 in the OEIS)

The term odd factorial is sometimes used for the double factorial of an odd number.[5][6]

The term semifactorial is also used by Knuth as a synonym of double factorial.[7]

  1. ^ Callan, David (2009). "A combinatorial survey of identities for the double factorial". arXiv:0906.1317 [math.CO].
  2. ^ Some authors define the double factorial differently for even numbers; see Double factorial § complex arguments below.
  3. ^ Weisstein, Eric W. "Double Factorial". mathworld.wolfram.com. Retrieved 2020-09-10.
  4. ^ "Double Factorials and Multifactorials | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2020-09-10.
  5. ^ Henderson, Daniel J.; Parmeter, Christopher F. (2012). "Canonical higher-order kernels for density derivative estimation". Statistics & Probability Letters. 82 (7): 1383–1387. doi:10.1016/j.spl.2012.03.013. MR 2929790.
  6. ^ Nielsen, B. (1999). "The likelihood-ratio test for rank in bivariate canonical correlation analysis". Biometrika. 86 (2): 279–288. doi:10.1093/biomet/86.2.279. MR 1705359.
  7. ^ Knuth, Donald Ervin (2023). The art of computer programming. volume 4B part 2: Combinatorial algorithms. Boston Munich: Addison-Wesley. ISBN 978-0-201-03806-4.