Draft:Triangulation sensing

  • Comment: Issues have not been fixed since the last decline. LR.127 (talk) 01:18, 18 September 2024 (UTC)
  • Comment: Requires complete rewrite and more references to prove notability. The Herald (Benison) (talk) 07:01, 4 February 2024 (UTC)

Triangulation sensing is a theory describing the computational steps of a cell containing on its surface small windows, to estimate the location of a source emitting random particles in a medium. Particles are absorbed by the receptors.This theory is relevant for studying neuron navigation in the Brain[1][2]. Indeed, reconstructing the source location allows a navigating cell to triangulate its position. The reconstruction steps of the gradient source from the fluxes of diffusing particles arriving to small absorbing receptors are:

  1. Arrival of the Brownian particles to the small windows
  2. Counting particles at each window to estimated the fluxes
  3. Inversion of the Laplace's equation to estimate the source position from combining the fluxes.
  4. Accounr for possible noise reduction by applying the same procedure to multple several window triplets[3]
  1. ^ Kolodkin, A. L.; Tessier-Lavigne, M. (2010-12-01). "Mechanisms and Molecules of Neuronal Wiring: A Primer". Cold Spring Harbor Perspectives in Biology. 3 (6): a001727. doi:10.1101/cshperspect.a001727. ISSN 1943-0264. PMC 3098670. PMID 21123392.
  2. ^ Blockus, Heike; Chédotal, Alain (August 2014). "The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases". Current Opinion in Neurobiology. 27: 82–88. doi:10.1016/j.conb.2014.03.003. ISSN 0959-4388. PMID 24698714. S2CID 8858588.
  3. ^ Dobramysl, U., & Holcman, D. (2018). Reconstructing the gradient source position from steady-state fluxes to small receptors. Scientific reports, 8(1), 1-8.