In category theory, a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the opposite category Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements. In other words, if a statement is true about C, then its dual statement is true about Cop. Also, if a statement is false about C, then its dual has to be false about Cop.
Given a concrete category C, it is often the case that the opposite category Cop per se is abstract. Cop need not be a category that arises from mathematical practice. In this case, another category D is also termed to be in duality with C if D and Cop are equivalent as categories.
In the case when C and its opposite Cop are equivalent, such a category is self-dual.[1]