Dynamic energy budget theory

The dynamic energy budget (DEB) theory is a formal metabolic theory which provides a single quantitative framework to dynamically describe the aspects of metabolism (energy and mass budgets) of all living organisms at the individual level, based on assumptions about energy uptake, storage, and utilization of various substances.[1][2][3][4][5][6][7][8][9] The DEB theory adheres to stringent thermodynamic principles, is motivated by universally observed patterns, is non-species specific, and links different levels of biological organization (cells, organisms, and populations) as prescribed by the implications of energetics.[8][9][10][11] Models based on the DEB theory have been successfully applied to over 1000 species with real-life applications ranging from conservation, aquaculture, general ecology, and ecotoxicology[12][13] (see also the Add-my-pet collection). The theory is contributing to the theoretical underpinning of the emerging field of metabolic ecology.

The explicitness of the assumptions and the resulting predictions enable testing against a wide variety of experimental results at the various levels of biological organization.[1][2][8][14][15] The theory explains many general observations, such as the body size scaling relationships of certain physiological traits, and provides a theoretical underpinning to the widely used method of indirect calorimetry.[4][7][8][16] Several popular empirical models are special cases of the DEB model, or very close numerical approximations.[1][16][17]

  1. ^ a b c Sousa, Tânia; Domingos, Tiago; Kooijman, S. A. L. M. (2008). "From empirical patterns to theory: a formal metabolic theory of life". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 363 (1502): 2453–2464. doi:10.1098/rstb.2007.2230. ISSN 0962-8436. PMC 2606805. PMID 18331988.
  2. ^ a b Jusup, Marko; Sousa, Tânia; Domingos, Tiago; Labinac, Velimir; Marn, Nina; Wang, Zhen; Klanjšček, Tin (2017). "Physics of metabolic organization". Physics of Life Reviews. 20: 1–39. Bibcode:2017PhLRv..20....1J. doi:10.1016/j.plrev.2016.09.001. PMID 27720138.
  3. ^ van der Meer, Jaap (2006). "Metabolic theories in ecology". Trends in Ecology & Evolution. 21 (3): 136–140. doi:10.1016/j.tree.2005.11.004. ISSN 0169-5347. PMID 16701489.
  4. ^ a b Kooijman, S. A. L. M. (2001). "Quantitative aspects of metabolic organization: a discussion of concepts". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 356 (1407): 331–349. doi:10.1098/rstb.2000.0771. ISSN 0962-8436. PMC 1088431. PMID 11316483.
  5. ^ Kooijman, S. A. L. M.; Troost, T. A. (2007-02-01). "Quantitative steps in the evolution of metabolic organisation as specified by the Dynamic Energy Budget theory". Biological Reviews. 82 (1): 113–142. doi:10.1111/j.1469-185x.2006.00006.x. ISSN 1469-185X. PMID 17313526. S2CID 801451.
  6. ^ M., Kooijman, S. A. L. (1993). Dynamic energy budgets in biological systems : theory and applications in ecotoxicology. Cambridge: Cambridge University Press. ISBN 978-0521452236. OCLC 29596070.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. ^ a b M., Kooijman, S. A. L. (2000). Dynamic energy and mass budgets in biological systems. Kooijman, S. A. L. M. (2nd ed.). Cambridge, UK: Cambridge University Press. ISBN 978-0521786089. OCLC 42912283.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. ^ a b c d Kooijman, S. A. L. M. (2010). Dynamic Energy Budget Theory for Metabolic Organisation. Cambridge University Press. ISBN 9780521131919.
  9. ^ a b Sousa, Tânia; Domingos, Tiago; Poggiale, J.-C.; Kooijman, S. A. L. M. (2010). "Dynamic energy budget theory restores coherence in biology". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 365 (1557): 3413–3428. doi:10.1098/rstb.2010.0166. ISSN 0962-8436. PMC 2981977. PMID 20921042.
  10. ^ Nisbet, R. M.; Muller, E. B.; Lika, K.; Kooijman, S. A. L. M. (2008). "From molecules to ecosystems through dynamic energy budget models". Journal of Animal Ecology. 69 (6): 913–926. doi:10.1111/j.1365-2656.2000.00448.x.
  11. ^ Maino, James L.; Kearney, Michael R.; Nisbet, Roger M.; Kooijman, Sebastiaan A. L. M. (2014-01-01). "Reconciling theories for metabolic scaling". Journal of Animal Ecology. 83 (1): 20–29. doi:10.1111/1365-2656.12085. ISSN 1365-2656. PMID 23668377.
  12. ^ "Zotero DEB library of scientific literature".
  13. ^ van der Meer, Jaap; Klok, Chris; Kearney, Michael R.; Wijsman, Jeroen W.M.; Kooijman, Sebastiaan A.L.M. (2014). "35years of DEB research". Journal of Sea Research. 94: 1–4. Bibcode:2014JSR....94....1V. doi:10.1016/j.seares.2014.09.004.
  14. ^ van der Meer, Jaap (2006). "An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation". Journal of Sea Research. 56 (2): 85–102. Bibcode:2006JSR....56...85V. doi:10.1016/j.seares.2006.03.001. ISSN 1385-1101. S2CID 7361555.
  15. ^ Kearney, Michael R.; White, Craig R. (2012-11-01). "Testing Metabolic Theories" (PDF). The American Naturalist. 180 (5): 546–565. doi:10.1086/667860. ISSN 0003-0147. PMID 23070317. S2CID 1733463.
  16. ^ a b Kooijman, S.A.L.M. (1988). "The von Bertalanffy growth rate as a function of physiological parameters: a comparative analysis". In Hallam, G Thomas; Gross, J. L.; Levin, A.S. (eds.). Mathematical Ecology - Proceedings Of The Autumn Course Research Seminars International Ctr For Theoretical Physics. #N/A. pp. 3–45. ISBN 9789814696777.
  17. ^ Kooijman, S.A.L.M. (1986-08-07). "Energy budgets can explain body size relations". Journal of Theoretical Biology. 121 (3): 269–282. Bibcode:1986JThBi.121..269K. doi:10.1016/S0022-5193(86)80107-2. ISSN 0022-5193.