Earth mass | |
---|---|
General information | |
Unit system | astronomy |
Unit of | mass |
Symbol | M🜨 |
Conversions | |
1 M🜨 in ... | ... is equal to ... |
SI base unit | (5.9722±0.0006)×1024 kg |
U.S. customary | ≈ 1.3166×1025 pounds |
An Earth mass (denoted as M🜨, M♁ or ME, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is M🜨 = 5.9722×1024 kg, with a relative uncertainty of 10−4.[2] It is equivalent to an average density of 5515 kg/m3. Using the nearest metric prefix, the Earth mass is approximately six ronnagrams, or 6.0 Rg.[3]
The Earth mass is a standard unit of mass in astronomy that is used to indicate the masses of other planets, including rocky terrestrial planets and exoplanets. One Solar mass is close to 333000 Earth masses. The Earth mass excludes the mass of the Moon. The mass of the Moon is about 1.2% of that of the Earth, so that the mass of the Earth–Moon system is close to 6.0457×1024 kg.
Most of the mass is accounted for by iron and oxygen (c. 32% each), magnesium and silicon (c. 15% each), calcium, aluminium and nickel (c. 1.5% each).
Precise measurement of the Earth mass is difficult, as it is equivalent to measuring the gravitational constant, which is the fundamental physical constant known with least accuracy, due to the relative weakness of the gravitational force. The mass of the Earth was first measured with any accuracy (within about 20% of the correct value) in the Schiehallion experiment in the 1770s, and within 1% of the modern value in the Cavendish experiment of 1798.