Using data gathered from the field, ecological relationships—such as the relation of sunlight and water availability to photosynthetic rate, or that between predator and prey populations—are derived, and these are combined to form ecosystem models. These model systems are then studied in order to make predictions about the dynamics of the real system. Often, the study of inaccuracies in the model (when compared to empirical observations) will lead to the generation of hypotheses about possible ecological relations that are not yet known or well understood. Models enable researchers to simulate large-scale experiments that would be too costly or unethical to perform on a real ecosystem. They also enable the simulation of ecological processes over very long periods of time (i.e. simulating a process that takes centuries in reality, can be done in a matter of minutes in a computer model).[3]
Ecosystem models have applications in a wide variety of disciplines, such as natural resource management,[4]ecotoxicology and environmental health,[5][6]agriculture,[7] and wildlife conservation.[8] Ecological modelling has even been applied to archaeology with varying degrees of success, for example, combining with archaeological models to explain the diversity and mobility of stone tools.[9]
^Fasham, M. J. R.; Ducklow, H. W.; McKelvie, S. M. (1990). "A nitrogen-based model of plankton dynamics in the oceanic mixed layer". Journal of Marine Research. 48 (3): 591–639. doi:10.1357/002224090784984678.
^Hall, Charles A.S. & Day, John W. (1990). Ecosystem Modeling in Theory and Practice: An Introduction with Case Histories. University Press of Colorado. pp. 7–8. ISBN978-0-87081-216-3.
^Dale, Virginia H. (2003). "Opportunities for Using Ecological Models for Resource Management". Ecological Modeling for Resource Management. pp. 3–19. doi:10.1007/0-387-21563-8_1. ISBN978-0-387-95493-6.