Effective domain

In convex analysis, a branch of mathematics, the effective domain extends of the domain of a function defined for functions that take values in the extended real number line

In convex analysis and variational analysis, a point at which some given extended real-valued function is minimized is typically sought, where such a point is called a global minimum point. The effective domain of this function is defined to be the set of all points in this function's domain at which its value is not equal to [1] It is defined this way because it is only these points that have even a remote chance of being a global minimum point. Indeed, it is common practice in these fields to set a function equal to at a point specifically to exclude that point from even being considered as a potential solution (to the minimization problem).[1] Points at which the function takes the value (if any) belong to the effective domain because such points are considered acceptable solutions to the minimization problem,[1] with the reasoning being that if such a point was not acceptable as a solution then the function would have already been set to at that point instead.

When a minimum point (in ) of a function is to be found but 's domain is a proper subset of some vector space then it often technically useful to extend to all of by setting at every [1] By definition, no point of belongs to the effective domain of which is consistent with the desire to find a minimum point of the original function rather than of the newly defined extension to all of

If the problem is instead a maximization problem (which would be clearly indicated) then the effective domain instead consists of all points in the function's domain at which it is not equal to

  1. ^ a b c d Rockafellar & Wets 2009, pp. 1–28.