Electrical muscle stimulation

Electrical muscle stimulation (EMS), also known as neuromuscular electrical stimulation (NMES) or electromyostimulation, is the elicitation of muscle contraction using electric impulses. EMS has received an increasing amount of attention in the last few years for many reasons: it can be utilized as a strength training tool for healthy subjects and athletes; it could be used as a rehabilitation and preventive tool for people who are partially or totally immobilized; it could be utilized as a testing tool for evaluating the neural and/or muscular function in vivo. EMS has been proven to be more beneficial before exercise and activity due to early muscle activation. Recent studies have found that electrostimulation has been proven to be ineffective during post exercise recovery and can even lead to an increase in Delayed onset muscle soreness (DOMS).[1]

The impulses are generated by the device and are delivered through electrodes on the skin near to the muscles being stimulated. The electrodes are generally pads that adhere to the skin. The impulses mimic the action potential that comes from the central nervous system, causing the muscles to contract. The use of EMS has been cited by sports scientists[2] as a complementary technique for sports training, and published research is available on the results obtained.[3] In the United States, EMS devices are regulated by the U.S. Food and Drug Administration (FDA).[4]

A number of reviews have looked at the devices.[5][6]

  1. ^ Dupuy, Olivier; Douzi, Wafa; Theurot, Dimitri; Bosquet, Laurent; Dugué, Benoit (2018). "An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis". Frontiers in Physiology. 9: 403. doi:10.3389/fphys.2018.00403. ISSN 1664-042X. PMC 5932411. PMID 29755363.
  2. ^ Zatsiorsky, Vladimir; Kraemer, William (2006). "Experimental Methods of Strength Training". Science and Practice of Strength Training. Human Kinetics. pp. 132–133. ISBN 978-0-7360-5628-1.
  3. ^ Examples of peer-reviewed research articles attesting increased muscular performance by utilizing EMS:[improper synthesis?]
    • Babault, Nicolas; Cometti, Gilles; Bernardin, Michel; Pousson, Michel; Chatard, Jean-Claude (2007). "Effects of Electromyostimulation Training on Muscle Strength and Power of Elite Rugby Players". The Journal of Strength and Conditioning Research. 21 (2): 431–437. doi:10.1519/R-19365.1. PMID 17530954. S2CID 948463.
    • Malatesta, D; Cattaneo, F; Dugnani, S; Maffiuletti, NA (2003). "Effects of electromyostimulation training and volleyball practice on jumping ability". Journal of Strength and Conditioning Research. 17 (3): 573–579. CiteSeerX 10.1.1.599.9278. doi:10.1519/00124278-200308000-00025. PMID 12930189.
    • Willoughby, Darryn S.; Simpson, Steve (1998). "Supplemental EMS and Dynamic Weight Training: Effects on Knee Extensor Strength and Vertical Jump of Female College Track & Field Athletes". Journal of Strength and Conditioning Research. 12 (3).
    • Willoughby, Darryn S.; Simpson, Steve (1996). "The Effects of Combined Electromyostimulation and Dynamic Muscular Contractions on the Strength of College Basketball Players". Journal of Strength and Conditioning Research. 10 (1).
  4. ^ FDA Guidance Document for Powered Muscle Stimulator, standard indications for use, page 4; contraindications, p. 7; warnings and precautions, p. 8. Product code: NGX
  5. ^ Gondin, Julien; Cozzone, Patrick J.; Bendahan, David (2011). "Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes?". European Journal of Applied Physiology. 111 (10): 2473–2487. doi:10.1007/s00421-011-2101-2. PMID 21909714. S2CID 1110395.
  6. ^ Babault, Nicolas; Cometti, Carole; Maffiuletti, Nicola A.; Deley, Gaëlle (2011). "Does electrical stimulation enhance post-exercise performance recovery?". European Journal of Applied Physiology. 111 (10): 2501–2507. doi:10.1007/s00421-011-2117-7. PMID 21847574. S2CID 606457.