Electrodialysis

Water desalination
Methods

Electrodialysis (ED) is used to transport salt ions from one solution through ion-exchange membranes to another solution under the influence of an applied electric potential difference. This is done in a configuration called an electrodialysis cell. The cell consists of a feed (dilute) compartment and a concentrate (brine) compartment formed by an anion exchange membrane and a cation exchange membrane placed between two electrodes. In almost all practical electrodialysis processes, multiple electrodialysis cells are arranged into a configuration called an electrodialysis stack, with alternating anion and cation-exchange membranes forming the multiple electrodialysis cells. Electrodialysis processes are different from distillation techniques and other membrane based processes (such as reverse osmosis (RO)) in that dissolved species are moved away from the feed stream, whereas other processes move away the water from the remaining substances. Because the quantity of dissolved species in the feed stream is far less than that of the fluid, electrodialysis offers the practical advantage of much higher feed recovery in many applications.[1][2][3][4][5][6][7]

  1. ^ Davis, T.A., "Electrodialysis", in Handbook of Industrial Membrane Technology, M.C. Porter, ed., Noyes Publications, New Jersey (1990)
  2. ^ Strathmann, H., "Electrodialysis", in Membrane Handbook, W.S.W. Ho and K.K. Sirkar, eds., Van Nostrand Reinhold, New York (1992)
  3. ^ Mulder, M., Basic Principles of Membrane Technology, Kluwer, Dordrecht (1996)
  4. ^ Sata, T., Ion Exchange Membranes: Preparation, Characterization, Modification and Application, Royal Society of Chemistry, London (2004)
  5. ^ Strathmann, H., Ion-Exchange Membrane Separation Processes, Elsevier, New York (2004)
  6. ^ "ED - Turning Seawater into Drinking Water". Archived from the original on 2007-02-03. Retrieved 2007-01-17.
  7. ^ Panagopoulos, Argyris; Haralambous, Katherine-Joanne; Loizidou, Maria (2019-11-25). "Desalination brine disposal methods and treatment technologies - A review". Science of the Total Environment. 693: 133545. Bibcode:2019ScTEn.69333545P. doi:10.1016/j.scitotenv.2019.07.351. ISSN 0048-9697. PMID 31374511.