Electromagnet

A simple electromagnet consisting of a coil of wire wrapped around an iron core. A core of ferromagnetic material like iron serves to increase the magnetic field created.[1] The strength of the magnetic field generated is proportional to the amount of current through the winding.[1]
Magnetic field produced by a solenoid (coil of wire). This drawing shows a cross-section through the center of the coil. The crosses are wires in which current is moving into the page; the dots are wires in which current is moving up out of the page.

An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.

The main advantage of an electromagnet over a permanent magnet is that the magnetic field can be quickly changed by controlling the amount of electric current in the winding. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field.

Electromagnets are widely used as components of other electrical devices, such as motors, generators, electromechanical solenoids, relays, loudspeakers, hard disks, MRI machines, scientific instruments, and magnetic separation equipment. Electromagnets are also employed in industry for picking up and moving heavy iron objects such as scrap iron and steel.[2]

  1. ^ a b Cite error: The named reference Hyperphysics was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference Merzouki was invoked but never defined (see the help page).