Electromagnetic radiation

A linearly polarized electromagnetic wave going in the z-axis, with E denoting the electric field and perpendicular B denoting magnetic field

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy.[1][2]

Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields. In a vacuum, electromagnetic waves travel at the speed of light, commonly denoted c. There, depending on the frequency of oscillation, different wavelengths of electromagnetic spectrum are produced. In homogeneous, isotropic media, the oscillations of the two fields are on average perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave.

Electromagnetic radiation is commonly referred to as "light", EM, EMR, or electromagnetic waves.[2]

The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter. In order of increasing frequency and decreasing wavelength, the electromagnetic spectrum includes: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays.[3][4]

Electromagnetic waves are emitted by electrically charged particles undergoing acceleration,[5][6] and these waves can subsequently interact with other charged particles, exerting force on them. EM waves carry energy, momentum, and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Electromagnetic radiation is associated with those EM waves that are free to propagate themselves ("radiate") without the continuing influence of the moving charges that produced them, because they have achieved sufficient distance from those charges. Thus, EMR is sometimes referred to as the far field, while the near field refers to EM fields near the charges and current that directly produced them, specifically electromagnetic induction and electrostatic induction phenomena.

In quantum mechanics, an alternate way of viewing EMR is that it consists of photons, uncharged elementary particles with zero rest mass which are the quanta of the electromagnetic field, responsible for all electromagnetic interactions.[7] Quantum electrodynamics is the theory of how EMR interacts with matter on an atomic level.[8] Quantum effects provide additional sources of EMR, such as the transition of electrons to lower energy levels in an atom and black-body radiation.[9] The energy of an individual photon is quantized and proportional to frequency according to Planck's equation E = hf, where E is the energy per photon, f is the frequency of the photon, and h is the Planck constant. Thus, higher frequency photons have more energy. For example, a 1020 Hz gamma ray photon has 1019 times the energy of a 101 Hz extremely low frequency radio wave photon.

The effects of EMR upon chemical compounds and biological organisms depend both upon the radiation's power and its frequency. EMR of lower energy ultraviolet or lower frequencies (i.e., near ultraviolet, visible light, infrared, microwaves, and radio waves) is non-ionizing because its photons do not individually have enough energy to ionize atoms or molecules or to break chemical bonds. The effect of non-ionizing radiation on chemical systems and living tissue is primarily simply heating, through the combined energy transfer of many photons. In contrast, high frequency ultraviolet, X-rays and gamma rays are ionizing – individual photons of such high frequency have enough energy to ionize molecules or break chemical bonds. Ionizing radiation can cause chemical reactions and damage living cells beyond simply heating, and can be a health hazard and dangerous.

  1. ^ *Purcell and Morin, Harvard University. (2013). Electricity and Magnetism, 820p (3rd ed.). Cambridge University Press, New York. ISBN 978-1-107-01402-2. p 430: "These waves... require no medium to support their propagation. Traveling electromagnetic waves carry energy, and... the Poynting vector describes the energy flow...;" p 440: ... the electromagnetic wave must have the following properties: 1) The field pattern travels with speed c (speed of light); 2) At every point within the wave... the electric field strength E equals "c" times the magnetic field strength B; 3) The electric field and the magnetic field are perpendicular to one another and to the direction of travel, or propagation."
  2. ^ a b "What Is Electromagnetic Radiation?". ThoughtCo. Archived from the original on 25 September 2024. Retrieved 25 September 2024.
  3. ^ Maxwell, J. Clerk (1 January 1865). "A Dynamical Theory of the Electromagnetic Field". Philosophical Transactions of the Royal Society of London. 155: 459–512. Bibcode:1865RSPT..155..459M. doi:10.1098/rstl.1865.0008. S2CID 186207827.
  4. ^ *Browne, Michael (2013). Physics for Engineering and Science, p427 (2nd ed.). McGraw Hill/Schaum, New York. ISBN 978-0-07-161399-6.; p319: "For historical reasons, different portions of the EM spectrum are given different names, although they are all the same kind of thing. Visible light constitutes a narrow range of the spectrum, from wavelengths of about 400-800 nm.... ;p 320 "An electromagnetic wave carries forward momentum... If the radiation is absorbed by a surface, the momentum drops to zero and a force is exerted on the surface... Thus the radiation pressure of an electromagnetic wave is (formula)."
  5. ^ Cloude, Shane (1995). An Introduction to Electromagnetic Wave Propagation and Antennas. Springer Science and Business Media. pp. 28–33. ISBN 978-0-387-91501-2.
  6. ^ Bettini, Alessandro (2016). A Course in Classical Physics, Vol. 4 – Waves and Light. Springer. pp. 95, 103. ISBN 978-3-319-48329-0.
  7. ^ "The Dual Nature of Light as Reflected in the Nobel Archives". nobelprize.org. Archived from the original on 15 July 2017. Retrieved 4 September 2017.
  8. ^ "Electromagnetic Spectrum facts, information, pictures | Encyclopedia.com articles about Electromagnetic Spectrum". encyclopedia.com. Archived from the original on 13 June 2017. Retrieved 4 September 2017.
  9. ^ Tipler, Paul A. (1999). Physics for Scientists and Engineers: Vol. 1: Mechanics, Oscillations and Waves, Thermodynamics. MacMillan. p. 454. ISBN 978-1-57259-491-3.