Type of audible sound
Electromagnetically induced acoustic noise (and vibration), electromagnetically excited acoustic noise, or more commonly known as coil whine, is audible sound directly produced by materials vibrating under the excitation of electromagnetic forces.
Some examples of this noise include the mains hum, hum of transformers, the whine of some rotating electric machines, or the buzz of fluorescent lamps. The hissing of high voltage transmission lines is due to corona discharge, not magnetism.
The phenomenon is also called audible magnetic noise,[1] electromagnetic acoustic noise, lamination vibration[2] or electromagnetically induced acoustic noise,[3] or more rarely, electrical noise,[4] or "coil noise", depending on the application. The term electromagnetic noise is generally avoided as the term is used in the field of electromagnetic compatibility, dealing with radio frequencies. The term electrical noise describes electrical perturbations occurring in electronic circuits, not sound. For the latter use, the terms electromagnetic vibrations[5] or magnetic vibrations,[6] focusing on the structural phenomenon are less ambiguous.
Acoustic noise and vibrations due to electromagnetic forces can be seen as the reciprocal of microphonics, which describes how a mechanical vibration or acoustic noise can induce an undesired electrical perturbation.
- ^ Le Besnerais, J., Lanfranchi, V., Hecquet, M., & Brochet, P. (2010). Characterization and Reduction of Audible Magnetic Noise Due to PWM Supply in Induction Machines. IEEE Transactions on Industrial Electronics. http://doi.org/10.1109/tie.2009.2029529
- ^ Hasson, Sol; Shulman, Yechiel (1967). "Transversal Motion in Transformer Laminations as a Cause of Noise". The Journal of the Acoustical Society of America. 41 (6): 1413–1417. Bibcode:1967ASAJ...41.1413H. doi:10.1121/1.1910500.
- ^ van der Giet, M., (2011). Analysis of electromagnetic acoustic noise excitations – a contribution to low-noise design and to the auralization of electrical machines, RWTH Aachen University, Shaker Verlag.
- ^ Finley, W. R., Hodowanec, M. M., & Holter, W. G. (1999). An Analytical Approach to Solving Motor Vibration Problems, 36(5), 1–16.
- ^ Carmeli, M. S., Castelli Dezza, F., & Mauri, M. (2006). Electromagnetic vibration and noise analysis of an external rotor permanent magnet motor. International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 1028–33. http://doi.org/10.1109/SPEEDAM.2006.1649919
- ^ Le Besnerais, J. (2015). Effect of lamination asymmetries on magnetic vibrations and acoustic noise in synchronous machines. In 2015 18th International Conference on Electrical Machines and Systems (ICEMS). http://doi.org/10.1109/icems.2015.7385319