Electronic skin refers to flexible, stretchable and self-healing electronics that are able to mimic functionalities of human or animal skin.[1][2] The broad class of materials often contain sensing abilities that are intended to reproduce the capabilities of human skin to respond to environmental factors such as changes in heat and pressure.[1][2][3][4]
Advances in electronic skin research focuses on designing materials that are stretchy, robust, and flexible. Research in the individual fields of flexible electronics and tactile sensing has progressed greatly; however, electronic skin design attempts to bring together advances in many areas of materials research without sacrificing individual benefits from each field.[5] The successful combination of flexible and stretchable mechanical properties with sensors and the ability to self-heal would open the door to many possible applications including soft robotics, prosthetics, artificial intelligence and health monitoring.[1][5][6][7]
Recent advances in the field of electronic skin have focused on incorporating green materials ideals and environmental awareness into the design process. As one of the main challenges facing electronic skin development is the ability of the material to withstand mechanical strain and maintain sensing ability or electronic properties, recyclability and self-healing properties are especially critical in the future design of new electronic skins.[8]
^ abcBenight, Stephanie J.; Wang, Chao; Tok, Jeffrey B.H.; Bao, Zhenan (2013). "Stretchable and self-healing polymers and devices for electronic skin". Progress in Polymer Science. 38 (12): 1961–1977. doi:10.1016/j.progpolymsci.2013.08.001.