Electrostatic particle accelerator

The Westinghouse Atom Smasher, an early Van de Graaff accelerator built 1937 at the Westinghouse Research Center in Forest Hills, Pennsylvania. The cutaway shows the fabric belts that carry charge up to the mushroom-shaped high voltage electrode. To improve insulation the machine was enclosed in a 65 ft. pressure vessel which was pressurized to 120 psi during operation. The high pressure air increased the voltage on the machine from 1 MV to 5 MV.
750 keV Cockcroft-Walton accelerator initial stage of the KEK accelerator in Tsukuba, Japan. The high voltage generator is right, the ion source and beam tube is at left

An electrostatic particle accelerator is a particle accelerator in which charged particles are accelerated to a high energy by a static high voltage potential. This contrasts with the other major category of particle accelerator, oscillating field particle accelerators, in which the particles are accelerated by oscillating electric fields.

Owing to their simpler design, electrostatic types were the first particle accelerators. The two most common types are the Van de Graaf generator invented by Robert Van de Graaff in 1929, and the Cockcroft-Walton accelerator invented by John Cockcroft and Ernest Walton in 1932. The maximum particle energy produced by electrostatic accelerators is limited by the maximum voltage which can be achieved the machine. This is in turn limited by insulation breakdown to a few megavolts. Oscillating accelerators do not have this limitation, so they can achieve higher particle energies than electrostatic machines.

The advantages of electrostatic accelerators over oscillating field machines include lower cost, the ability to produce continuous beams, and higher beam currents that make them useful to industry. As such, they are by far the most widely used particle accelerators, with industrial applications such as plastic shrink wrap production, high power X-ray machines, radiation therapy in medicine, radioisotope production, ion implanters in semiconductor production, and sterilization. Many universities worldwide have electrostatic accelerators for research purposes. High energy oscillating field accelerators usually incorporate an electrostatic machine as their first stage, to accelerate particles to a high enough velocity to inject into the main accelerator.