Part of a series related to |
Biomineralization |
---|
An endoskeleton (From Greek ἔνδον, éndon = "within", "inner" + σκελετός, skeletos = "skeleton") is a structural frame (skeleton) on the inside of an animal, overlaid by soft tissues and usually composed of mineralized tissue.[1][2] Endoskeletons serve as structural support against gravity and mechanical loads, and provide anchoring attachment sites for skeletal muscles to transmit force and allow movements and locomotion.
Vertebrates and the closely related cephalochordates are the predominant animal clade with endoskeletons (made of mostly bone and sometimes cartilage), although invertebrates such as sponges also have evolved a form of endoskeletons made of diffuse meshworks of calcite/silica structural elements called spicules, and echinoderms have a dermal calcite endoskeleton known as ossicles. Some coleoid cephalopods (squids and cuttlefish) have an internalized vestigial aragonite/calcite-chitin shell known as gladius or cuttlebone, which can serve as muscle attachments but the main function is often to maintain buoyancy rather than to give structural support, and their body shape is largely maintained by hydroskeleton.
Compared to the exoskeletons of many invertebrates, endoskeletons allow much larger overall body sizes for the same skeletal mass, as most soft tissues and organs are positioned outside the skeleton rather than within it. Being more centralized in structure also means more compact volume, making it easier for the circulatory system to perfuse and oxygenate, as well as higher tissue density against stress. The external nature of muscle attachments also allows thicker and more diverse muscle architectures, as well as more versatile range of motions.