Energy-based model

An energy-based model (EBM) (also called a Canonical Ensemble Learning(CEL) or Learning via Canonical Ensemble (LCE)) is an application of canonical ensemble formulation of statistical physics for learning from data problems. The approach prominently appears in generative models (GMs).

EBMs provide a unified framework for many probabilistic and non-probabilistic approaches to such learning, particularly for training graphical and other structured models.[citation needed]

An EBM learns the characteristics of a target dataset and generates a similar but larger dataset. EBMs detect the latent variables of a dataset and generate new datasets with a similar distribution.

Energy-based generative neural networks [1][2] is a class of generative models, which aim to learn explicit probability distributions of data in the form of energy-based models whose energy functions are parameterized by modern deep neural networks.

Boltzmann machines are a special form of energy-based models with a specific parametrization of the energy.[3]

  1. ^ Xie, Jianwen; Lu, Yang; Zhu, Song-Chun; Wu, Ying Nian (2016). "A theory of generative ConvNet". ICML. arXiv:1602.03264. Bibcode:2016arXiv160203264X.
  2. ^ Xie, Jianwen; Zhu, Song-Chun; Wu, Ying Nian (2019). "Learning Energy-based Spatial-Temporal Generative ConvNets for Dynamic Patterns". IEEE Transactions on Pattern Analysis and Machine Intelligence. 43 (2): 516–531. arXiv:1909.11975. Bibcode:2019arXiv190911975X. doi:10.1109/tpami.2019.2934852. ISSN 0162-8828. PMID 31425020. S2CID 201098397.
  3. ^ Learning Deep Architectures for AI, Yoshua Bengio, Page 54, https://books.google.com/books?id=cq5ewg7FniMC&pg=PA54