This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that can be applied to the matter content of the theory. The hope is then that any reasonable matter theory will satisfy this condition or at least will preserve the condition if it is satisfied by the starting conditions.
Energy conditions are not physical constraints per se, but are rather mathematically imposed boundary conditions that attempt to capture a belief that "energy should be positive".[1] Many energy conditions are known to not correspond to physical reality—for example, the observable effects of dark energy are well known to violate the strong energy condition.[2][3]
In general relativity, energy conditions are often used (and required) in proofs of various important theorems about black holes, such as the no hair theorem or the laws of black hole thermodynamics.