Energy planning

Energy planning has a number of different meanings, but the most common meaning of the term is the process of developing long-range policies to help guide the future of a local, national, regional or even the global energy system.[1] Energy planning is often conducted within governmental organizations but may also be carried out by large energy companies such as electric utilities or oil and gas producers. These oil and gas producers release greenhouse gas emissions. Energy planning may be carried out with input from different stakeholders drawn from government agencies, local utilities, academia and other interest groups.

Since 1973, energy modeling, on which energy planning is based, has developed significantly. Energy models can be classified into three groups: descriptive, normative, and futuristic forecasting.[2]

Energy planning is often conducted using integrated approaches that consider both the provision of energy supplies and the role of energy efficiency in reducing demands (Integrated Resource Planning).[3] Energy planning should always reflect the outcomes of population growth and economic development. There are also several alternative energy solutions which avoid the release of greenhouse gasses, like electrifying current machines and using nuclear energy. A unused energy plan for cities is created as a result of a careful investigation of the arranging prepare, which coordinating city arranging and vitality arranging together and gives energy arrangements for high-level cities and mechanical parks.[4]

  1. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).
  2. ^ Bhatia, S.C. (2014). "Energy resources and their utilisation". Science Direct.
  3. ^ Best Practices in Electric Utility Integrated Resource Planning, Synapse Energy Economics, June 2013. Retrieved January 9, 2015
  4. ^ Li, Lili; Taeihagh, Araz (April 1, 2020). "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020". Applied Energy. 263: 114611. doi:10.1016/j.apenergy.2020.114611. ISSN 0306-2619. S2CID 212868659.