Escherichia coli

Escherichia coli
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Enterobacteriaceae
Genus: Escherichia
Species:
E. coli
Binomial name
Escherichia coli
(Migula 1895)
Castellani and Chalmers 1919
Synonyms

Escherichia coli (/ˌɛʃəˈrɪkiə ˈkl/ ESH-ə-RIK-ee-ə KOH-lye)[1][2] is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms.[3][4] Most E. coli strains are harmless, but some serotypes such as EPEC and ETEC are pathogenic, can cause serious food poisoning in their hosts and are occasionally responsible for food contamination incidents that prompt product recalls.[5][6] Most strains are part of the normal microbiota of the gut and are harmless or even beneficial to humans (although these strains tend to be less studied than the pathogenic ones).[7] For example, some strains of E. coli benefit their hosts by producing vitamin K2[8] or by preventing the colonization of the intestine by pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship — where both the humans and the E. coli are benefitting each other.[9][10] E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh fecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.[11]

E. coli and other facultative anaerobes constitute about 0.1% of gut microbiota,[12] and fecal–oral transmission is the major route through which pathogenic strains of the bacterium cause disease. Cells are able to survive outside the body for a limited amount of time, which makes them potential indicator organisms to test environmental samples for fecal contamination.[13][14] A growing body of research, though, has examined environmentally persistent E. coli which can survive for many days and grow outside a host.[15]

The bacterium can be grown and cultured easily and inexpensively in a laboratory setting, and has been intensively investigated for over 60 years. E. coli is a chemoheterotroph whose chemically defined medium must include a source of carbon and energy.[16] E. coli is the most widely studied prokaryotic model organism, and an important species in the fields of biotechnology and microbiology, where it has served as the host organism for the majority of work with recombinant DNA. Under favourable conditions, it takes as little as 20 minutes to reproduce.[17]

  1. ^ "coli". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  2. ^ Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow [England], Pearson Education Ltd.
  3. ^ Tenaillon O, Skurnik D, Picard B, Denamur E (March 2010). "The population genetics of commensal Escherichia coli". Nature Reviews. Microbiology. 8 (3): 207–17. doi:10.1038/nrmicro2298. PMID 20157339. S2CID 5490303.
  4. ^ Singleton P (1999). Bacteria in Biology, Biotechnology and Medicine (5th ed.). Wiley. pp. 444–54. ISBN 978-0-471-98880-9.
  5. ^ "Escherichia coli". CDC National Center for Emerging and Zoonotic Infectious Diseases. Retrieved 2 October 2012.
  6. ^ Vogt RL, Dippold L (2005). "Escherichia coli O157:H7 outbreak associated with consumption of ground beef, June–July 2002". Public Health Reports. 120 (2): 174–78. doi:10.1177/003335490512000211. PMC 1497708. PMID 15842119.
  7. ^ Martinson JNV, Walk ST (2020). "Escherichia coli residency in the gut of healthy human adults". EcoSal Plus. 9 (1). doi:10.1177/003335490512000211. PMC 7523338. PMID 32978935.
  8. ^ Bentley R, Meganathan R (September 1982). "Biosynthesis of vitamin K (menaquinone) in bacteria". Microbiological Reviews. 46 (3): 241–80. doi:10.1128/ecosalplus.ESP-0003-2020. PMC 281544. PMID 6127606.
  9. ^ Hudault S, Guignot J, Servin AL (July 2001). "Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection". Gut. 49 (1): 47–55. doi:10.1136/gut.49.1.47. PMC 1728375. PMID 11413110.
  10. ^ Reid G, Howard J, Gan BS (September 2001). "Can bacterial interference prevent infection?". Trends in Microbiology. 9 (9): 424–28. doi:10.1016/S0966-842X(01)02132-1. PMID 11553454.
  11. ^ Russell JB, Jarvis GN (April 2001). "Practical mechanisms for interrupting the oral-fecal lifecycle of Escherichia coli". Journal of Molecular Microbiology and Biotechnology. 3 (2): 265–72. PMID 11321582.
  12. ^ Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. (June 2005). "Diversity of the human intestinal microbial flora". Science. 308 (5728): 1635–38. Bibcode:2005Sci...308.1635E. doi:10.1126/science.1110591. PMC 1395357. PMID 15831718.
  13. ^ Feng P, Weagant S, Grant M (1 September 2002). "Enumeration of Escherichia coli and the Coliform Bacteria". Bacteriological Analytical Manual (8th ed.). FDA/Center for Food Safety & Applied Nutrition. Archived from the original on 19 May 2009. Retrieved 25 January 2007.
  14. ^ Thompson A (4 June 2007). "E. coli Thrives in Beach Sands". Live Science. Retrieved 3 December 2007.
  15. ^ Montealegre MC, Roy S, Böni F, Hossain MI, Navab-Daneshmand T, Caduff L, et al. (December 2018). "Risk Factors for Detection, Survival, and Growth of Antibiotic-Resistant and Pathogenic Escherichia coli in Household Soils in Rural Bangladesh". Applied and Environmental Microbiology. 84 (24): e01978–18. Bibcode:2018ApEnM..84E1978M. doi:10.1128/AEM.01978-18. PMC 6275341. PMID 30315075.
  16. ^ Cite error: The named reference Tortora was invoked but never defined (see the help page).
  17. ^ "Bacteria". Microbiologyonline. Archived from the original on 27 February 2014. Retrieved 27 February 2014.