In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.[1]
The Euler equations can be applied to incompressible and compressible flows. The incompressible Euler equations consist of Cauchy equations for conservation of mass and balance of momentum, together with the incompressibility condition that the flow velocity is a solenoidal field. The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a suitable constitutive equation for the specific energy density of the fluid. Historically, only the equations of conservation of mass and balance of momentum were derived by Euler. However, fluid dynamics literature often refers to the full set of the compressible Euler equations – including the energy equation – as "the compressible Euler equations".[2]
The mathematical characters of the incompressible and compressible Euler equations are rather different. For constant fluid density, the incompressible equations can be written as a quasilinear advection equation for the fluid velocity together with an elliptic Poisson's equation for the pressure. On the other hand, the compressible Euler equations form a quasilinear hyperbolic system of conservation equations.
The Euler equations can be formulated in a "convective form" (also called the "Lagrangian form") or a "conservation form" (also called the "Eulerian form"). The convective form emphasizes changes to the state in a frame of reference moving with the fluid. The conservation form emphasizes the mathematical interpretation of the equations as conservation equations for a control volume fixed in space (which is useful from a numerical point of view).