The Event Horizon Telescope project is an international collaboration that was launched in 2009[1] after a long period of theoretical and technical developments. On the theory side, work on the photon orbit[3] and first simulations of what a black hole would look like[4] progressed to predictions of VLBI imaging for the Galactic Center black hole, Sgr A*.[5][6] Technical advances in radio observing moved from the first detection of Sgr A*,[7] through VLBI at progressively shorter wavelengths, ultimately leading to detection of horizon scale structure in both Sgr A* and M87.[8][9] The collaboration now comprises over 300[10] members, and 60 institutions, working in over 20 countries and regions.[11]
The first image of a black hole, at the center of galaxy Messier 87, was published by the EHT Collaboration on April 10, 2019, in a series of six scientific publications.[12] The array made this observation at a wavelength of 1.3 mm and with a theoretical diffraction-limited resolution of 25 microarcseconds. In March 2021, the Collaboration presented, for the first time, a polarized-based image of the black hole which may help better reveal the forces giving rise to quasars.[13] Future plans involve improving the array's resolution by adding new telescopes and by taking shorter-wavelength observations.[2][14] On 12 May 2022, astronomers unveiled the first image of the supermassive black hole at the center of the Milky Way, Sagittarius A*.[15]
Recently EHT Project has reported to have reached the resolution of 870 μm at 345 GHz, that is pair to 19 μas, the best angular resolution at astronomical facilities on Earth.[16]
^ abDoeleman, Sheperd (June 21, 2009). "Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole". Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers. 2010: 68. arXiv:0906.3899. Bibcode:2009astro2010S..68D.
^Bardeen, James (1973). "Black holes. Edited by C. DeWitt and B. S. DeWitt". Les Houches École d'Été de Physique Théorique. Bibcode:1973blho.conf.....D.
^Luminet, Jean-Pierre (July 31, 1979). "Image of a spherical black hole with thin accretion disk". Astronomy and Astrophysics. 75: 228. Bibcode:1979A&A....75..228L.