Existential generalization

Existential generalization
TypeRule of inference
FieldPredicate logic
StatementThere exists a member in a universal set with a property of
Symbolic statement

In predicate logic, existential generalization[1][2] (also known as existential introduction, ∃I) is a valid rule of inference that allows one to move from a specific statement, or one instance, to a quantified generalized statement, or existential proposition. In first-order logic, it is often used as a rule for the existential quantifier () in formal proofs.

Example: "Rover loves to wag his tail. Therefore, something loves to wag its tail."

Example: "Alice made herself a cup of tea. Therefore, Alice made someone a cup of tea."

Example: "Alice made herself a cup of tea. Therefore, someone made someone a cup of tea."

In the Fitch-style calculus:

where is obtained from by replacing all its free occurrences of (or some of them) by .[3]

  1. ^ Copi, Irving M.; Cohen, Carl (2005). Introduction to Logic. Prentice Hall.
  2. ^ Hurley, Patrick (1991). A Concise Introduction to Logic 4th edition. Wadsworth Publishing. ISBN 9780534145156.
  3. ^ pg. 347. Jon Barwise and John Etchemendy, Language proof and logic Second Ed., CSLI Publications, 2008.