Exponentially modified Gaussian distribution

EMG
Probability density function
Probability density function for the EMG distribution
Cumulative distribution function
Cumulative distribution function for the EMG distribution
Parameters μR — mean of Gaussian component
σ2 > 0 — variance of Gaussian component
λ > 0 — rate of exponential component
Support xR
PDF
CDF


where

is the CDF of a Gaussian distribution
Mean
Mode

Variance
Skewness
Excess kurtosis
MGF
CF

In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable Z may be expressed as Z = X + Y, where X and Y are independent, X is Gaussian with mean μ and variance σ2, and Y is exponential of rate λ. It has a characteristic positive skew from the exponential component.

It may also be regarded as a weighted function of a shifted exponential with the weight being a function of the normal distribution.