Extended discrete element method

An internal temperature distribution for a spherical particle versus radius and time under a time-varying heat flux.

The extended discrete element method (XDEM) is a numerical technique that extends the dynamics of granular material or particles as described through the classical discrete element method (DEM) (Cundall[1] and Allen[2]) by additional properties such as the thermodynamic state, stress/strain or electro-magnetic field for each particle. Contrary to a continuum mechanics concept, the XDEM aims at resolving the particulate phase with its various processes attached to the particles. While the discrete element method predicts position and orientation in space and time for each particle, the extended discrete element method additionally estimates properties such as internal temperature and/or species distribution or mechanical impact with structures.

  1. ^ Cundall, P. A.; Strack, O. D. L. (1979). "A discrete numerical model for granular assemblies". Geotechnique. 29: 47–65. doi:10.1680/geot.1979.29.1.47.
  2. ^ Allen, M. P.; Tildesley, D. J. (1990). Computer Simulation of Liquids. Clarendon Press Oxford.