F-space

In functional analysis, an F-space is a vector space over the real or complex numbers together with a metric such that

  1. Scalar multiplication in is continuous with respect to and the standard metric on or
  2. Addition in is continuous with respect to
  3. The metric is translation-invariant; that is, for all
  4. The metric space is complete.

The operation is called an F-norm, although in general an F-norm is not required to be homogeneous. By translation-invariance, the metric is recoverable from the F-norm. Thus, a real or complex F-space is equivalently a real or complex vector space equipped with a complete F-norm.

Some authors use the term Fréchet space rather than F-space, but usually the term "Fréchet space" is reserved for locally convex F-spaces. Some other authors use the term "F-space" as a synonym of "Fréchet space", by which they mean a locally convex complete metrizable topological vector space. The metric may or may not necessarily be part of the structure on an F-space; many authors only require that such a space be metrizable in a manner that satisfies the above properties.