FASTRAC

FASTRAC
NamesFASTRAC 1 ("Sara-Lily")
FASTRAC 2 ("Emma")
Mission typeTechnology demonstration
Amateur radio
OperatorUniversity of Texas at Austin
COSPAR ID2010-062F & 2010-062M
SATCAT no.37227 & 37380
Spacecraft properties
ManufacturerUniversity of Texas at Austin
Launch massTotal: 58 kg (127 lb)[1]
Start of mission
Launch date20 November 2010, 01:21 (2010-11-20UTC01:21) UTC[2]
RocketMinotaur IV Flight 3
Launch siteKodiak Launch Complex
ContractorOrbital Sciences
End of mission
DisposalDecommissioned[3]
Orbital parameters
Reference systemGeocentric
RegimeLow Earth
Perigee altitude641 km
Apogee altitude652 km
Inclination72°

Formation Autonomy Spacecraft with Thrust, Relnav, Attitude and Crosslink (or FASTRAC) is a pair of nanosatellites (respectively named Sara-Lily and Emma) developed and built by students at The University of Texas at Austin. The project is part of a program sponsored by the Air Force Research Laboratory (AFRL), whose goal is to lead the development of affordable space technology. The FASTRAC mission will specifically investigate technologies that facilitate the operation of multiple satellites in formation. These enabling technologies include relative navigation, cross-link communications, attitude determination, and thrust. Due to the high cost of lifting mass into orbit, there is a strong initiative to miniaturize the overall weight of spacecraft. The utilization of formations of satellites, in place of large single satellites, reduces the risk of single point failure and allows for the use of low-cost hardware.

In January 2005, the University of Texas won the University Nanosat-3 Program, a grant-based competition that included 12 other participating universities.[4] As a winner, FASTRAC was given the opportunity to launch its satellites into space. The student-led team received $100,000 from AFRL for the competition portion of the project, and another $100,000 for the implementation phase. FASTRAC is the first student-developed satellite mission incorporating on-orbit real-time relative navigation, on-orbit real-time attitude determination using a single GPS antenna, and a micro-discharge plasma thruster.

FASTRAC launched on 19 November 2010 aboard a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska.[5] Separation of the satellites from each other and cross-link communication were successfully carried out.[6]

FASTRAC was developed under the US Air Force Research Laboratory University Nanosatellite Program, and was ranked number 32 in the Space Experiments Review Board's list of prioritised spacecraft experiments in 2006. The spacecraft were expected to demonstrate Global Positioning System relative navigation and micro-charge thruster performance.

  1. ^ "FASTRAC: Press Kit 2010" (PDF). University of Texas at Austin. Archived from the original (PDF) on 14 March 2012.
  2. ^ Muñoz, Sebastián; et al. (2011). The FASTRAC Mission: Operations Summary and Preliminary Experiment Results. 25th AIAA/USU Conference on Small Satellites. 9 August 2011. Logan, Utah. See also https://digitalcommons.usu.edu/smallsat/2011/all2011/24/.
  3. ^ "Past Missions". Texas Spacecraft Laboratory, University of Texas at Austin. Retrieved 24 October 2019.
  4. ^ "FASTRAC Project Overview". University of Texas at Austin. 2010-11-02. Archived from the original on 2010-11-14. Retrieved 2010-11-08.
  5. ^ Muñoz, Sebastian (2010-11-02). "FASTRAC News Archive". University of Texas at Austin. Archived from the original on 2010-11-14. Retrieved 2010-11-08.
  6. ^ First student-developed mission in which satellites orbit and communicate led by UT students, University of Texas at Austin press release, 24 March 2011.