Part of a series on |
Numeral systems |
---|
List of numeral systems |
This article needs additional citations for verification. (March 2021) |
In combinatorics, the factorial number system, also called factoradic, is a mixed radix numeral system adapted to numbering permutations. It is also called factorial base, although factorials do not function as base, but as place value of digits. By converting a number less than n! to factorial representation, one obtains a sequence of n digits that can be converted to a permutation of n elements in a straightforward way, either using them as Lehmer code or as inversion table[1] representation; in the former case the resulting map from integers to permutations of n elements lists them in lexicographical order. General mixed radix systems were studied by Georg Cantor.[2]
The term "factorial number system" is used by Knuth,[3] while the French equivalent "numération factorielle" was first used in 1888.[4] The term "factoradic", which is a portmanteau of factorial and mixed radix, appears to be of more recent date.[5]