Field | Arithmetic geometry |
---|---|
Conjectured by | Louis Mordell |
Conjectured in | 1922 |
First proof by | Gerd Faltings |
First proof in | 1983 |
Generalizations | Bombieri–Lang conjecture Mordell–Lang conjecture |
Consequences | Siegel's theorem on integral points |
Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell,[1] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings.[2] The conjecture was later generalized by replacing by any number field.