Female sperm storage

Sperm storage organs in the fruit fly Drosophila melanogaster. Female was first mated with GFP-male and then re-mated with RFP-male.

Female sperm storage is a biological process and often a type of sexual selection in which sperm cells transferred to a female during mating are temporarily retained within a specific part of the reproductive tract before the oocyte, or egg, is fertilized. This process takes place in some species of animals. The site of storage is variable among different animal taxa and ranges from structures that appear to function solely for sperm retention, such as insect spermatheca[1] and bird sperm storage tubules (bird anatomy),[2][3] to more general regions of the reproductive tract enriched with receptors to which sperm associate before fertilization, such as the caudal portion of the cow oviduct containing sperm-associating annexins.[4] Female sperm storage is an integral stage in the reproductive process for many animals with internal fertilization. It has several documented biological functions including:

  • Supporting the sperm by: a.) enabling sperm to undergo biochemical transitions, called capacitation and motility hyperactivation, in which they become physiologically capable of fertilizing an oocyte (e.g. mammals)[5][6] and b.) maintaining sperm viability until an oocyte is ovulated (e.g. insects and mammals).[5][7]
  • Decreasing the incidence of polyspermy (e.g. some mammals such as pigs).[5][8]
  • Enabling mating, ovulation and/or fertilization to occur at different times or in different environments (e.g. many insects and some amphibians, reptiles, birds and mammals).[9][10][11]
  • Supporting prolonged and sustained female fertility (e.g. some insects).[12][13]
  • Having a role influencing offspring sex ratios among some insects possessing a haplodiploid sex-determination system (e.g. ants, bees, wasps and thrips as well as some true bugs and some beetles).[14][15][16]
  • Serving as an arena in which sperm from different mating males compete for access to oocytes, a process called sperm competition, and in which females may preferentially utilize sperm from some males over those of others, called female sperm preference or cryptic female choice (e.g. many invertebrate animals, birds and reptiles).[17][18][19]
  1. ^ Klowden MJ. 2003. Spermatheca. In Resh VH and Cardé RT (eds.): Encyclopedia of Insects. San Diego, CA: Academic Press. 1266.
  2. ^ Liem KL, Bemis WE, Walker WF & Grande L. 2001. Functional Anatomy of the Vertebrates, an Evolutionary Perspective Archived 2021-12-26 at the Wayback Machine 3rd ed. Belmont, CA: Brooks/Cole – Thomson Learning. Pp703.
  3. ^ Birkhead TR. 1998. Sperm Competition in Birds: mechanisms and function. In Birkhead TR & Møller AP (eds.) 1998. Sperm Competition and Sexual Selection. San Diego, CA: Academic Press. Pp. 826.
  4. ^ Ignotz, George G; Cho, Margaret Y; Suarez, Susan S (2007). "Annexins Are Candidate Oviductal Receptors for Bovine Sperm Surface Proteins and Thus May Serve to Hold Bovine Sperm in the Oviductal Reservoir1". Biology of Reproduction. 77 (6): 906–13. doi:10.1095/biolreprod.107.062505. PMID 17715429.
  5. ^ a b c Suarez, SS (2002). "Formation of a Reservoir of Sperm in the Oviduct". Reproduction in Domestic Animals. 37 (3): 140–3. doi:10.1046/j.1439-0531.2002.00346.x. PMID 12071887.
  6. ^ Suarez, S. S (2008). "Control of hyperactivation in sperm". Human Reproduction Update. 14 (6): 647–57. doi:10.1093/humupd/dmn029. PMID 18653675.
  7. ^ Allen, A. K; Spradling, A. C (2007). "The Sf1-related nuclear hormone receptor Hr39 regulates Drosophila female reproductive tract development and function". Development. 135 (2): 311–21. doi:10.1242/dev.015156. PMID 18077584.
  8. ^ Hunter, R. H. F; Leglise, P. C (1971). "Polyspermic Fertilization Following Tubal Surgery in Pigs, with Particular Reference to the Role of the Isthmus". Reproduction. 24 (2): 233–46. CiteSeerX 10.1.1.1028.5312. doi:10.1530/jrf.0.0240233. PMID 5102536.
  9. ^ Kardong KV. 2009. Vertebrates: Comparative Anatomy, Function, Evolution. 5th ed. Boston, MA: McGraw Hill. Pp 779.
  10. ^ Birkhead, T. R; Møller, A. P (1993). "Sexual selection and the temporal separation of reproductive events: Sperm storage data from reptiles, birds and mammals". Biological Journal of the Linnean Society. 50 (4): 295–311. doi:10.1111/j.1095-8312.1993.tb00933.x.
  11. ^ Holt, William V (2011). "Mechanisms of Sperm Storage in the Female Reproductive Tract: An Interspecies Comparison". Reproduction in Domestic Animals. 46: 68–74. doi:10.1111/j.1439-0531.2011.01862.x. PMID 21884282.
  12. ^ Ridley, M (1988). "Mating Frequency and Fecundity in Insects". Biological Reviews. 63 (4): 509–49. doi:10.1111/j.1469-185X.1988.tb00669.x. S2CID 85110084.
  13. ^ Den Boer, S. P. A; Baer, B; Dreier, S; Aron, S; Nash, D. R; Boomsma, J. J (2009). "Prudent sperm use by leaf-cutter ant queens". Proceedings of the Royal Society B: Biological Sciences. 276 (1675): 3945–53. doi:10.1098/rspb.2009.1184. JSTOR 30245087. PMC 2825782. PMID 19710057.
  14. ^ Antolin MF & Henk AD. 2003. Sex Determination. In Resh VH and Cardé RT (eds.): Encyclopedia of Insects. San Diego, CA: Academic Press. 1266.
  15. ^ Werren, J. H (1980). "Sex Ratio Adaptations to Local Mate Competition in a Parasitic Wasp". Science. 208 (4448): 1157–9. Bibcode:1980Sci...208.1157W. doi:10.1126/science.208.4448.1157. PMID 17783073. S2CID 28151928.
  16. ^ King, P. E (1961). "A Possible Method of Sex Ratio Determination in the Parasitic Hymenopteran Nasonia vitripennis". Nature. 189 (4761): 330–1. Bibcode:1961Natur.189..330K. doi:10.1038/189330a0. S2CID 4181967.
  17. ^ Birkhead TR & Møller AP (eds.) 1998. Sperm Competition and Sexual Selection. San Diego, CA: Academic Press. Pp. 826.
  18. ^ Eberhard WG. 1996. Female Control: Sexual Selection and Cryptic Female Choice. Princeton, NJ: Princeton University Press. Pp 501.
  19. ^ Leonard J. & Cordoba-Aguilar A. 2010. The Evolution of Primary Sexual Characters in Animals (pp. 1–52). Oxford: Oxford University Press.