A Feynman sprinkler, also referred to as a Feynman inverse sprinkler or reverse sprinkler, is a sprinkler-like device which is submerged in a tank and made to suck in the surrounding fluid. The question of how such a device would turn was the subject of an intense and remarkably long-lived debate. The device generally remains steady with no rotation, though with sufficiently low friction and high rate of inflow, it has been seen to turn weakly in the opposite direction of a conventional sprinkler.
A regular sprinkler has nozzles arranged at angles on a freely rotating wheel such that when water is pumped out of them, the resulting jets cause the wheel to rotate; a Catherine wheel and the aeolipile ("Hero's engine") work on the same principle. A "reverse" or "inverse" sprinkler would operate by aspirating the surrounding fluid instead. The problem is now commonly associated with theoretical physicist Richard Feynman, who mentions it in his bestselling memoirs Surely You're Joking, Mr. Feynman!. The problem did not originate with Feynman, nor did he publish a solution to it.
A simple, replicable Mach-Feynman sprinkler experiment is shown here:
The rotor turns towards the nozzles.